A Decomposition of a Quasi-oscillator
نویسندگان
چکیده
A decomposition of a simplest mechanical system – a q-oscillator, is considered. A qoscillator (quasi-oscillator) is defined as a system consisting of a particle moving on a linear segment with a constant speed and reflecting from the segment’s end-points. A theorem, stating that a discrete-time version of q-oscillator can be decomposed into a countable set of discrete-time rotators (a rotator consists of a particle rotating on a circle with a constant angular rate) as well as a metrical theorem, concerning the rate of such decomposition, are proved. Some physics-related examples are discussed. A phase-shifting perturbed rotator and a number-theoretical matrix system modelling the quantum oscillator, are presented.
منابع مشابه
COMPARING NUMERICAL METHODS FOR THE SOLUTION OF THE DAMPED FORCED OSCILLATOR PROBLEM
In this paper, we present a comparative study between the Adomian decomposition method and two classical well-known Runge-Kutta and central difference methods for the solution of damped forced oscillator problem. We show that the Adomian decomposition method for this problem gives more accurate approximations relative to other numerical methods and is easier to apply.
متن کاملSolution of Nonlinear Hardening and Softening type Oscillators by Adomian’s Decomposition Method
A type of nonlinearity in vibrational engineering systems emerges when the restoring force is a nonlinear function of displacement. The derivative of this function is known as stiffness. If the stiffness increases by increasing the value of displacement from the equilibrium position, then the system is known as hardening type oscillator and if the stiffness decreases by increasing the value of ...
متن کاملQuasi-Primary Decomposition in Modules Over Proufer Domains
In this paper we investigate decompositions of submodules in modules over a Proufer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Proufer domain of finite character are proved. Proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decompo...
متن کاملClassical quasi-primary submodules
In this paper we introduce the notion of classical quasi-primary submodules that generalizes the concept of classical primary submodules. Then, we investigate decomposition and minimal decomposition into classical quasi-primary submodules. In particular, existence and uniqueness of classical quasi-primary decompositions in finitely generated modules over Noetherian rings are proved. More...
متن کاملLittlewood problem for a singular subquadratic potential ( Dedicated to Professor George R . Sell
We consider a periodically forced singular oscillator in which the potential has subquadratic growth at infinity and admits a singularity. Using Moser’s twist theorem of invariant curves, we show the existence of quasi-periodic solutions. This solves the Littlewood problem on the boundedness of all solutions for such a system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009